Because Wikipedia blocked by GFW(the Great firewall of China ), I can't creat the page User:Rii'jeg'fkep'c/mathem
in my simple English Wikipedia. So I write mathematical formula in here.
−
(
a
)
=
−
a
;
a
−
0
=
0
{\displaystyle -(a)=-a\ ;\quad a-0=0}
a
+
b
=
(
a
+
b
)
(
−
a
)
+
(
−
b
)
=
−
(
a
+
b
)
a
+
(
−
b
)
=
a
−
b
=
−
(
b
−
a
)
a
+
0
=
a
−
0
=
a
a
+
b
=
b
+
a
(
a
+
b
)
+
c
=
a
+
b
+
c
=
a
+
(
b
+
c
)
=
(
a
+
c
)
+
b
a
−
b
=
a
+
(
−
b
)
{\displaystyle {\begin{aligned}&a+b=(a+b)\\&(-a)+(-b)=-(a+b)\\&a+(-b)=a-b=-(b-a)\\&a+0=a-0=a\\&a+b=b+a\\&(a+b)+c=a+b+c=a+(b+c)=(a+c)+b\\&a-b=a+(-b)\end{aligned}}}
a
⋅
b
=
b
⋅
a
=
a
b
=
b
a
a
⋅
0
=
0
−
a
=
(
−
1
)
⋅
a
(
−
1
)
⋅
(
−
1
)
=
(
−
1
)
2
=
1
−
a
⋅
b
=
−
a
b
(
−
a
)
⋅
(
−
b
)
=
(
−
1
)
⋅
(
−
1
)
⋅
a
b
=
a
b
(
a
+
b
)
⋅
c
=
(
a
+
b
)
c
=
a
c
+
a
b
a
⋅
(
b
⋅
c
)
=
a
b
c
=
(
a
b
)
c
=
(
a
c
)
b
=
(
b
c
)
a
a
÷
b
=
a
b
{\displaystyle {\begin{aligned}&a\cdot b=b\cdot a=ab=ba\\&a\cdot 0=0\\&-a=(-1)\cdot a\\&(-1)\cdot (-1)=(-1)^{2}=1\\&-a\cdot b=-ab\\&(-a)\cdot (-b)=(-1)\cdot (-1)\cdot ab=ab\\&(a+b)\cdot c=(a+b)c=ac+ab\\&a\cdot (b\cdot c)=abc=(ab)c=(ac)b=(bc)a\\&a\div b={\frac {a}{b}}\end{aligned}}}
b
n
=
b
⋅
b
⋅
e
t
c
.
b
⋅
b
⏟
n
b
2
=
b
⋅
b
,
b
3
=
b
⋅
b
⋅
b
b
1
2
=
b
b
−
n
=
1
b
n
b
−
1
=
1
b
=
1
÷
b
b
0
=
1
{\displaystyle {\begin{aligned}&b^{n}=\underbrace {b\cdot b\cdot \mathrm {etc.} \quad b\cdot b} _{\mathrm {n} }\\&b^{2}=b\cdot b\ ,\ b^{3}=b\cdot b\cdot b\\&b^{\tfrac {1}{2}}={\sqrt {b}}\\&b^{-n}={\frac {1}{b^{n}}}\\&b^{-1}={\frac {1}{b}}=1\div b\\&b^{0}=1\end{aligned}}}
A
B
=
A
⋅
M
B
⋅
M
A
B
=
A
÷
N
B
÷
N
,
N
≠
0
b
1
a
1
+
b
2
a
1
=
b
1
+
b
2
a
1
b
1
a
1
+
b
2
a
2
=
b
1
a
2
a
1
a
2
+
a
1
b
2
a
1
a
2
=
a
1
b
2
+
a
2
b
1
a
1
a
2
b
1
a
1
⋅
b
2
a
2
=
b
1
b
2
a
1
a
2
b
1
a
1
÷
b
2
a
2
=
a
2
b
1
a
1
b
2
{\displaystyle {\begin{aligned}&{\frac {A}{B}}={\frac {A\cdot M}{B\cdot M}}\qquad {\frac {A}{B}}={\frac {A\div N}{B\div N}}\ ,N\neq 0\\&{\frac {b_{1}}{a_{1}}}+{\frac {b_{2}}{a_{1}}}={\frac {b_{1}+b_{2}}{a_{1}}}\\&{\frac {b_{1}}{a_{1}}}+{\frac {b_{2}}{a_{2}}}={\frac {b_{1}a_{2}}{a_{1}a_{2}}}+{\frac {a_{1}b_{2}}{a_{1}a_{2}}}={\frac {a_{1}b_{2}+a_{2}b_{1}}{a_{1}a_{2}}}\\&{\frac {b_{1}}{a_{1}}}\cdot {\frac {b_{2}}{a_{2}}}={\frac {b_{1}b_{2}}{a_{1}a_{2}}}\\&{\frac {b_{1}}{a_{1}}}\div {\frac {b_{2}}{a_{2}}}={\frac {a_{2}b_{1}}{a_{1}b_{2}}}\end{aligned}}}
∗
∗
∗
+
∗
∗
=
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
−
∗
∗
∗
∗
=
∗
∗
∗
∗
∗
×
∗
∗
=
∗
∗
∗
+
∗
∗
∗
=
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
÷
∗
∗
∗
=
∗
∗
…
…
∗
∗
∗
∗
∗
∗
∗
÷
∗
∗
=
∗
∗
∗
(
∗
∗
∗
)
!
=
∗
×
∗
∗
×
∗
∗
∗
=
∗
∗
∗
∗
∗
∗
1
r
+
=
1
,
r
∈
R
∗
∗
∗
∗
∗
∗
⋯
⋯
∗
∗
⏟
n
=
n
⋅
∗
=
1
n
−
1
+
1
n
−
2
+
⋯
⋯
+
1
1
+
1
0
=
1
+
1
+
⋯
⋯
+
1
⏟
n
=
n
{\displaystyle {\begin{aligned}&***+**=*****\\&******-****=**\\&***\times **=***+***=******\\&*******\div ***=**{\dots \dots }*\\&******\div **=***\\&(***)!=*\times **\times ***=******\\&1^{r_{+}}=1,r\in \mathrm {R} \\&\underbrace {******\cdots \cdots **} _{n}=n\cdot *=1^{n-1}+1^{n-2}+{\cdots \cdots }+1^{1}+1^{0}=\underbrace {1+1+\cdots \cdots +1} _{n}=n\end{aligned}}}
(
a
+
b
)
(
c
+
d
)
=
a
(
c
+
d
)
+
b
(
c
+
d
)
=
a
c
+
a
d
+
b
c
+
b
d
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
(
a
+
b
)
2
−
(
a
−
b
)
2
=
4
a
b
1
n
(
n
+
1
)
=
1
n
+
1
n
+
1
a
⋅
b
=
a
b
a
(
b
+
c
)
=
a
b
+
c
{\displaystyle {\begin{aligned}&{\begin{aligned}(a+b)(c+d)&=a(c+d)+b(c+d)\\&=ac+ad+bc+bd\end{aligned}}\\&\\&(a+b)(a-b)=a^{2}-b^{2}\\&(a+b)^{2}=a^{2}+2ab+b^{2}\\&(a-b)^{2}=a^{2}-2ab+b^{2}\\&(a+b)^{2}-(a-b)^{2}=4ab\\&\\&{\frac {1}{n(n+1)}}={\frac {1}{n}}+{\frac {1}{n+1}}\\&{\sqrt {a}}\cdot {\sqrt {b}}={\sqrt {ab}}\\&{\sqrt {a(b+c)}}={\sqrt {a}}{\sqrt {b+c}}\end{aligned}}}
a
n
=
a
1
+
(
n
−
1
)
l
,
Σ
n
=
n
(
a
1
+
a
n
)
2
=
n
a
1
+
(
n
−
1
)
n
l
2
a
n
=
a
1
q
n
−
1
,
Σ
n
=
a
1
(
1
−
q
n
)
1
−
q
=
a
1
(
q
n
−
1
)
q
−
1
a
n
=
n
,
Σ
n
=
n
(
n
+
1
)
2
a
n
=
2
n
−
1
,
Σ
n
=
n
2
a
n
=
n
2
,
Σ
n
=
n
(
n
+
1
)
(
2
n
+
1
)
6
{\displaystyle {\begin{aligned}&a_{n}=a_{1}+(n-1)l\ ,\ \Sigma _{n}={\frac {n(a_{1}+a_{n})}{2}}=na_{1}+{\frac {(n-1)nl}{2}}\\&a_{n}=a_{1}q^{n-1}\ ,\ \Sigma _{n}={\frac {a_{1}(1-q^{n})}{1-q}}={\frac {a_{1}(q^{n}-1)}{q-1}}\\&a_{n}=n\ ,\ \Sigma _{n}={\frac {n(n+1)}{2}}\\&a_{n}=2n-1\ ,\ \Sigma _{n}=n^{2}\\&a_{n}=n^{2}\ ,\ \Sigma _{n}={\frac {n(n+1)(2n+1)}{6}}\end{aligned}}}
a
+
(
b
−
c
)
=
a
+
b
−
c
a
−
(
b
+
c
)
=
a
−
b
−
c
a
−
(
b
−
c
)
=
a
−
b
+
c
a
(
b
÷
c
)
=
a
⋅
b
÷
c
=
a
b
c
a
÷
(
b
⋅
c
)
=
a
÷
b
÷
c
=
a
b
c
a
÷
(
b
÷
c
)
=
a
÷
b
⋅
c
=
a
c
b
{\displaystyle {\begin{aligned}&a+(b-c)=a+b-c\\&a-(b+c)=a-b-c\\&a-(b-c)=a-b+c\\&a(b\div c)=a\cdot b\div c={\frac {ab}{c}}\\&a\div (b\cdot c)=a\div b\div c={\frac {a}{bc}}\\&a\div (b\div c)=a\div b\cdot c={\frac {ac}{b}}\end{aligned}}}
a
=
b
∴
a
+
c
=
b
+
c
a
−
c
=
b
−
c
a
⋅
c
=
b
⋅
c
a
÷
c
=
b
÷
c
a
n
=
b
n
ln
a
=
ln
b
n
a
=
n
b
e
t
c
e
t
e
r
a
{\displaystyle {\begin{aligned}&a=b\\&\therefore \\&a+c=b+c\\&a-c=b-c\\&a\cdot c=b\cdot c\\&a\div c=b\div c\\&a^{n}=b^{n}\\&\ln {a}=\ln {b}\\&n^{a}=n^{b}\\&\mathrm {etcetera} \end{aligned}}}
{
a
1
x
+
b
1
y
+
c
1
=
0
a
2
x
+
b
2
y
+
c
2
=
0
y
=
−
a
1
b
1
x
−
c
1
b
1
a
2
x
+
b
2
[
−
a
1
b
1
x
−
c
1
b
1
]
+
c
2
=
0
a
2
b
1
x
−
a
1
b
2
x
−
b
2
c
1
+
b
1
c
2
=
0
(
a
1
b
2
−
a
2
b
1
)
x
=
(
b
1
c
2
−
b
2
c
1
)
x
0
=
b
1
c
2
−
b
2
c
1
a
1
b
2
−
a
2
b
1
b
1
c
2
−
b
2
c
1
a
1
b
2
−
a
2
b
1
⋅
a
1
+
b
1
y
+
c
1
=
0
b
1
y
=
−
a
1
b
1
c
2
−
a
1
b
2
c
1
+
a
1
b
2
c
1
−
a
2
b
1
c
1
a
1
b
2
−
a
2
b
1
=
−
a
1
b
1
c
2
−
a
2
b
1
c
1
a
1
b
2
−
a
2
b
1
y
0
=
−
a
1
c
2
−
a
2
c
1
a
1
b
2
−
a
2
b
1
{
x
0
=
b
1
c
2
−
b
2
c
1
M
y
0
=
−
a
1
c
2
−
a
2
c
1
M
M
=
a
1
b
2
−
a
2
b
1
{\displaystyle {\begin{aligned}&{\begin{cases}a_{1}x+b_{1}y+c_{1}=0&\\a_{2}x+b_{2}y+c_{2}=0\end{cases}}\\&y=-{\frac {a_{1}}{b_{1}}}x-{\frac {c_{1}}{b_{1}}}\\&a_{2}x+b_{2}\left[-{\frac {a_{1}}{b_{1}}}x-{\frac {c_{1}}{b_{1}}}\right]+c_{2}=0\\&a_{2}b_{1}x-a_{1}b_{2}x-b_{2}c_{1}+b_{1}c_{2}=0\\&(a_{1}b_{2}-a_{2}b_{1})x=(b_{1}c_{2}-b_{2}c_{1})\\&x_{0}={\frac {b_{1}c_{2}-b_{2}c_{1}}{a_{1}b_{2}-a_{2}b_{1}}}\\&\\&{\frac {b_{1}c_{2}-b_{2}c_{1}}{a_{1}b_{2}-a_{2}b_{1}}}\cdot a_{1}+b_{1}y+c_{1}=0\\&{\begin{aligned}b_{1}y&=-{\frac {a_{1}b_{1}c_{2}-a_{1}b_{2}c_{1}+a_{1}b_{2}c_{1}-a_{2}b_{1}c_{1}}{a_{1}b_{2}-a_{2}b_{1}}}\\&=-{\frac {a_{1}b_{1}c_{2}-a_{2}b_{1}c_{1}}{a_{1}b_{2}-a_{2}b_{1}}}\end{aligned}}\\&y_{0}=-{\frac {a_{1}c_{2}-a_{2}c_{1}}{a_{1}b_{2}-a_{2}b_{1}}}\\&\\&{\begin{cases}x_{0}={\frac {b_{1}c_{2}-b_{2}c_{1}}{M}}&\\y_{0}=-{\frac {a_{1}c_{2}-a_{2}c_{1}}{M}}\end{cases}}\\&M=a_{1}b_{2}-a_{2}b_{1}\end{aligned}}}
Geology for calculation
change
c
2
=
4
⋅
1
2
a
b
+
(
b
−
a
)
2
=
2
a
b
+
b
2
−
2
a
b
+
a
2
=
a
2
+
b
2
c
2
=
(
a
+
b
)
2
−
4
⋅
1
2
a
b
=
a
2
+
2
a
b
+
b
2
−
2
a
b
=
a
2
+
b
2
{\displaystyle {\begin{aligned}&{\begin{aligned}c^{2}&=4\cdot {\tfrac {1}{2}}ab+(b-a)^{2}\\&=2ab+b^{2}-2ab+a^{2}\\&=a^{2}+b^{2}\end{aligned}}\\&{\begin{aligned}c^{2}&=(a+b)^{2}-4\cdot {\tfrac {1}{2}}ab\\&=a^{2}+2ab+b^{2}-2ab\\&=a^{2}+b^{2}\end{aligned}}\end{aligned}}}
y
−
y
0
=
k
(
x
−
x
0
)
y
=
k
x
+
b
y
−
y
1
y
2
−
y
1
=
x
−
x
1
x
2
−
x
1
x
a
+
y
b
=
1
A
x
+
B
y
+
C
=
0
{\displaystyle {\begin{aligned}&\\&y-y_{0}=k(x-x_{0})\\&y=kx+b\\&{\frac {y-y_{1}}{y_{2}-y_{1}}}={\frac {x-x_{1}}{x_{2}-x_{1}}}\\&{\frac {x}{a}}+{\frac {y}{b}}=1\\&Ax+By+C=0\end{aligned}}}
e
=
lim
n
→
∞
(
1
+
1
n
)
n
=
lim
n
→
∞
∑
k
=
0
n
C
n
k
1
n
−
k
(
1
n
)
k
=
lim
n
→
∞
[
C
n
0
1
n
(
1
n
)
0
+
C
n
1
1
n
−
1
(
1
n
)
1
+
C
n
2
1
n
−
2
(
1
n
)
2
+
C
n
3
1
n
−
3
(
1
n
)
3
+
.
.
.
+
C
n
n
1
0
(
1
n
)
n
]
=
lim
n
→
∞
[
1
×
1
+
n
×
1
n
+
n
!
(
n
−
2
)
!
2
!
×
1
n
2
+
n
!
(
n
−
3
)
!
3
!
×
1
n
3
+
.
.
.
+
1
×
1
n
n
]
=
lim
n
→
∞
[
1
+
1
+
n
×
(
n
−
1
)
2
!
×
n
2
+
n
×
(
n
−
1
)
(
n
−
2
)
3
!
×
n
3
+
.
.
.
+
1
n
n
]
=
1
Π
(
0
)
+
1
Π
(
1
)
+
1
Π
(
2
)
+
1
Π
(
3
)
+
.
.
.
=
∑
n
=
0
∞
1
Π
(
n
)
{\displaystyle {\begin{aligned}&\mathrm {e} =\lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n}\\&=\lim _{n\to \infty }\sum _{k=0}^{n}\mathrm {C} _{n}^{k}1^{n-k}\left({\frac {1}{n}}\right)^{k}\\&=\lim _{n\to \infty }\left[\mathrm {C} _{n}^{0}1^{n}\left({\frac {1}{n}}\right)^{0}+\mathrm {C} _{n}^{1}1^{n-1}\left({\frac {1}{n}}\right)^{1}+\mathrm {C} _{n}^{2}1^{n-2}\left({\frac {1}{n}}\right)^{2}+\mathrm {C} _{n}^{3}1^{n-3}\left({\frac {1}{n}}\right)^{3}+...+\mathrm {C} _{n}^{n}1^{0}\left({\frac {1}{n}}\right)^{n}\right]\\&=\lim _{n\to \infty }\left[1\times 1+n\times {\frac {1}{n}}+{\frac {n!}{\left(n-2\right)!2!}}\times {\frac {1}{n^{2}}}+{\frac {n!}{\left(n-3\right)!3!}}\times {\frac {1}{n^{3}}}+...+1\times {\frac {1}{n^{n}}}\right]\\&=\lim _{n\to \infty }\left[1+1+{\frac {n\times \left(n-1\right)}{2!\times n^{2}}}+{\frac {n\times \left(n-1\right)\left(n-2\right)}{3!\times n^{3}}}+...+{\frac {1}{n^{n}}}\right]\\&={\frac {1}{\Pi (0)}}+{\frac {1}{\Pi (1)}}+{\frac {1}{\Pi (2)}}+{\frac {1}{\Pi (3)}}+...\\&=\sum _{n=0}^{\infty }{\frac {1}{\Pi (n)}}\end{aligned}}}
Π
(
0
)
=
1
Π
(
n
)
=
1
⋅
2
⋅
3
⋅
.
.
.
n
=
∏
k
=
1
n
k
=
n
(
n
−
1
)
!
C
n
m
=
A
n
m
m
!
=
n
!
(
n
−
m
)
!
m
!
{\displaystyle {\begin{aligned}&\Pi (0)=1\\&\Pi (\mathrm {n} )=1\cdot 2\cdot 3\cdot ...\mathrm {n} =\textstyle \prod _{k=1}^{n}\displaystyle k=\mathrm {n(n-1)} !\\&\mathrm {C_{n}^{m}} ={\frac {\mathrm {A_{n}^{m}} }{\mathrm {m!} }}={\frac {\mathrm {n!} }{\mathrm {(n-m)!m!} }}\end{aligned}}}
ln
(
a
)
+
ln
(
b
)
=
ln
(
a
b
)
ln
(
a
)
−
ln
(
b
)
=
ln
(
a
b
)
ln
1
=
0
ln
e
=
1
ln
a
n
=
n
ln
a
log
a
b
=
ln
b
ln
a
lg
n
=
ln
(
n
)
ln
10
a
n
=
e
n
ln
a
ln
n
=
ln
n
n
−
1
+
ln
(
n
−
1
)
=
2
∑
k
=
1
∞
[
1
2
k
−
1
(
1
2
n
−
1
)
2
k
−
1
]
+
ln
(
n
−
1
)
log
a
N
=
x
|
a
x
=
N
log
a
1
=
0
log
a
a
=
1
a
log
a
N
=
N
{\displaystyle {\begin{aligned}&\ln(a)+\ln(b)=\ln(ab)\\&\ln(a)-\ln(b)=\ln({\frac {a}{b}})\\&\ln 1=0\\&\ln e=1\\&\ln a^{n}=n\ln a\\&\log _{a}b={\frac {\ln b}{\ln a}}\\&\lg n={\frac {\ln(n)}{\ln 10}}\\&a^{n}=e^{n\ln a}\\&\ln n=\ln {\frac {n}{n-1}}+\ln {(n-1)}=2\sum _{k=1}^{\infty }[{\frac {1}{2k-1}}({\frac {1}{2n-1}})^{2k-1}]+\ln(n-1)\\&\log _{a}{N}=x|_{a^{x}=N}\\&\log _{a}1=0\\&\log _{a}{a}=1\\&a^{\log _{a}{N}}=N\end{aligned}}}
log
a
M
+
log
a
N
=
log
a
(
M
N
)
m
=
log
a
M
,
n
=
log
a
N
a
m
⋅
a
n
=
a
m
+
n
∵
a
log
a
N
=
N
∴
M
N
=
a
m
+
n
m
+
n
=
log
a
(
M
N
)
log
a
M
+
log
a
N
=
log
a
(
M
N
)
log
a
M
−
log
a
N
=
log
a
M
N
m
=
log
a
M
,
n
=
log
a
N
a
m
÷
a
n
=
a
m
−
n
∵
a
log
a
N
=
N
∴
M
N
=
a
m
−
n
m
−
n
=
log
a
M
N
log
a
M
−
log
a
N
=
log
a
M
N
log
a
N
m
=
m
log
a
N
{\displaystyle {\begin{aligned}&\log _{a}{M}+\log _{a}{N}=\log _{a}{(MN)}\\&m=\log _{a}{M},n=\log _{a}{N}\\&a^{m}\cdot a^{n}=a^{m+n}\quad \because a^{\log _{a}{N}}=N\\&\therefore MN=a^{m+n}\\&m+n=\log _{a}{(MN)}\\&\log _{a}{M}+\log _{a}{N}=\log _{a}{(MN)}\\&\log _{a}{M}-\log _{a}{N}=\log _{a}{\frac {M}{N}}\\&m=\log _{a}{M},n=\log _{a}{N}\\&a^{m}\div a^{n}=a^{m-n}\quad \because a^{\log _{a}{N}}=N\\&\therefore {\frac {M}{N}}=a^{m-n}\\&m-n=\log _{a}{\frac {M}{N}}\\&\log _{a}{M}-\log _{a}{N}=\log _{a}{\frac {M}{N}}\\&\log _{a}{N^{m}}=m\log _{a}{N}\end{aligned}}}
log
a
b
=
log
c
b
log
c
a
log
a
b
=
m
a
m
=
b
log
c
b
=
log
c
a
m
=
m
log
c
a
m
=
log
a
b
=
log
c
b
log
c
a
=
log
c
a
m
log
c
a
=
m
log
c
a
log
c
a
=
m
log
a
b
=
log
c
b
log
c
a
log
m
n
=
1
log
n
m
log
a
m
b
n
=
n
m
log
a
b
e
n
=
10
n
ln
10
{\displaystyle {\begin{aligned}&\log _{a}{b}={\frac {\log _{c}{b}}{\log _{c}{a}}}\\&\log _{a}{b}=m\\&a^{m}=b\\&\log _{c}{b}=\log _{c}{a^{m}}=m\log _{c}{a}\\&m=\log _{a}{b}={\frac {\log _{c}{b}}{\log _{c}{a}}}={\frac {\log _{c}{a^{m}}}{\log _{c}{a}}}={\frac {m\log _{c}{a}}{\log _{c}{a}}}=m\\&\log _{a}{b}={\frac {\log _{c}{b}}{\log _{c}{a}}}\\&\log _{m}{n}={\frac {1}{\log _{n}{m}}}\\&\log _{a^{m}}{b^{n}}={\frac {n}{m}}\log _{a}{b}\\&e^{n}=10^{\frac {n}{\ln 10}}\end{aligned}}}
Arrangment and combination
change
a
n
=
1
n
∃
ε
1
n
<
ε
1
<
n
ε
n
ε
>
1
n
>
1
ε
lim
n
→
∞
1
n
=
0
{\displaystyle {\begin{aligned}&a_{n}={\frac {1}{n}}\\&\exists \varepsilon \\&{\frac {1}{n}}<\varepsilon \\&1<n\varepsilon \\&n\varepsilon >1\\&n>{\frac {1}{\varepsilon }}\\&\lim _{n\to \infty }{\frac {1}{n}}=0\end{aligned}}}